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ocean waveguides

Kevin D. LePage

Time series variability in fluctuating
Executive Summary: Sonar performance is adversly affected by the high
degree of variability introduced by internal waves and other oceanographic
phenomena in the ocean. In addition, the prediction of acoustic propagation in
general is difficult because the environmental information generally available in
databases is of poor resolution and is highly uncertain. The result is that actual
sonar performance often varies significantly from predictions. For this reason
efforts at characterizing the predictability of acoustic propagation through the
i uncertain ocean are required.
In this report the variability of the temporal arrival structure of a broadband
acoustic signal measured in a fluctuating ocean channel is derived. Expressions
for the mean and variance of the signal intensity are obtained as functions of
the statistical properties of the sound speed uncertainty. The ocean variability
is required to be characterized both as a function of depth and of range. These
types of characterizations are often available from gridded databases and are
also obtainable from CTD casts. The theory uses these characteristics to esti-
mate the resulting statistical properties of the acoustic signals. These statistical
properties can then be used to estimate the performance degradation of various
sonar systems. As an example, the performance degradation is estimated for
one of the advanced sonar concepts being developed here at SACLANTCEN.
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Time series variability in fluctuating
ocean waveguides

Kevin D. LePage

Abstract: The variability of signals propagating through an uncertain
sound speed structure is addressed. Signals are assumed to travel in a nar-
row band adiabatically in modes and to experience fluctuations in sound speed
which are characterized according to the vertical and horizontal distributions
of these fluctuations. The sound speed fluctuations are assumed to affect only
the phase speed and the group speed of the modes in a perturbative way. The
changes in the local phase and group speeds are expanded for small perturba-
tions to the sound speed. Sound speed perturbations are described in terms of
their statistical characteristics. Vertically, the sound speed fluctuations are de-
composed into empirical orthogonal functions (EOFs), while horizontally they
are assumed to be correlated on some horizontal length scale much smaller than
the propagation ranges of interest. Thus the cumulative phase and group speed
fluctuations over the propagation path are assumed to be distributed Gaussian
according to the central limit theorem.

The framework outlined above is used to derive the first and second moments
of the signal envelope received over an ensemble of ocean realizations following
the distribution properties outlined above. Since the mean and variance of the
expected signal are obtained in the time domain, the stability of modal arrivals
in time can be predicted for a variety of different sound speed fluctuation dis-
tributions. Since the phase and group speed fluctuations are linear in identical
terms involving the inner product of the mode shape functions with the EOFs,
the fluctuations of these quantities are entirely correlated. However, as the dif-
ferent EOF's express themselves differently on each set of propagating modes,
the modal interference structure becomes less certain due to the fluctuations.
The theory estimates this degree of decorrelation as a function of the signal,
waveguide and fluctuation parameters.

In order to benchmark the theory, the first moment of the short time average of
the signal intensity is also predicted using realizations of propagation through
an ensemble of sound speed fluctuations consistent with the statistical descrip-
tion. Excellent agreement is found between these self-consistent Monte-Carlo
estimates of the signal variability and the closed form expressions.

Keywords:  signal fluctuations o empirical orthogonal functions (EOF) o
complex envelope o narrowband o time reversal mirror o internal waves
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1

Introduction

The fact that acoustic waves travel through significant fine scale and mesoscale sound
speed structure between source and receiver at basin and global scales introduces
significant variability between time series which might be predicted using only large
scale information about the variation in sound channel and actual received time
series. As acoustic waves travel through the sound channel, they encounter local
variations from the mean sound speed structure predicted by data bases which are
introduced by 1) biases between database predictions of sound speed as averages
over annual measurements and a particular realization at databases scales (typically
1 degree resolution), and 2) fine scale structure which is inadequately accounted
for in the databases, such as internal wave activity. Because of these measurement
uncertainties, predicted waveforms which coherently superimpose modes across the
band of interest to synthesize a highly coherent snapshot of a particular realization of
the sound field will vary significantly from actual measured arrival time series. Since
the purpose of predicting time series is to help understand what signals a detector
and time of arrival estimator may reliably expect, what is required are estimates of
the expected arrival structure averaged over a large number of realizations of sound
channel variability.
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2

Theory

We propose a simple model for the time series received a great distance from a source
which is parameterized not only on deterministic variables such as center frequency,
bandwidth, receiver and source depth, but also on uncertainty accumulated along the
path introduced by sound channel fluctuations. If we assume that sound channel
perturbations introduce local fluctuations in the wavenumber and group speed of
modes, and further assume that the fluctuations are not significant enough to cause
mode coupling, we arrive at the following expression for the time series received at
a receiver in the limit of large range

—i(wot— [ k2(r") dr'+ [ Dkn(r') dr')
p(t,r, 2) ® < (2m)1/? Z oo 2200, )
n=1 Jo k3 (r7) dr’
X / o dwe= = [ Sn(r') dr'+ [ £Sa(r') dr')} ’ (1)
—Aw

where S, = &, and Aky(r'), ASn(r') are the deviations in the modal wavenumbers
and slownesses caused by perturbations to the local sound speed structure at range
r’, and the sub or superscripts o indicate that the quantity has been evaluated at
the center frequency. These have been derived before [1, 2] and are reiterated here
for convenience

Dkn(r') = ~% (r’)/ Ac(z, 1) ¢2(2,") dz. (2)

o €3z, 7)p(z, 1)

S, = ~<2—S( Vo) o | e ) ds

Ac(z,r")  0dn(z,7) o ds
(r’)/ BT e BTz (3)

It is assumed that all the mean properties of the sound channel at range ' have
been characterized in terms of the modal properties k,, S, and ¢,, and that the
remaining uncertainties Ak, and AS,, are well approximated by Egs. (2) and (3).

-2 -
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2.1 Characterization of signal variablity in terms of Empirical Orthogonal Func-
tions

The question of intermodal correlation of the deviations in the wavenumber and
slowness to particular realizations in the sound speed perturbations Ac leads us to
adopt the decomposition of the sound speed fluctuations into Empirical Orthogonal
Functions (EOFs,)each of which are by definition uncorrelated for the particular
data from which they were obtained, but which, following Krolik [3], will also be as-
sumed to be statistically independent. We seek to understand how the decorrelation
between adjacent modes dictates the expected behavior of a received time series.
These decorrelations are caused by the differences in the responses of the individ-
ual modes to the common sound speed perturbations they encounter as they travel
along the propagation path. The use of EOF's allows these differences in response
to be decomposed into uncorrelated components; if only one EOF is used then the
perturbations between all the modes remain entirely correlated.

The sound speed perturbations are expanded in terms of range dependent coefficients
on the EOF bases

E
Ac(z,r) = de(r)¢e(z),
ex=1
where the bases are estimated from data sets according to the formula
U(:,e) = V(s e+ 1)/Vdz.

Here V(:,e+ 1) are the right singular vectors of the singular value decomposition of
the sound speed profile covariance

Utsv = > e(ra)el(z, ),

and dz = D/N, where D is the depth of the water column and N is the number of
receiver depths.

The first right singular vector V(:,1) is proportional to the mean or background
sound speed profile and thus is not used to describe the random component of the
sound speed profile. The range dependent coefficients are determined from the EOF
bases according to the relation

g(r) = {‘I’T\Il}_l \Ich(r). (4)

In this way the range integral of the deviations to the modal wavenumber and
slowness are determined in terms of known constants and the range integral of the
EOF coefficients ¢
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. E
/ Ako(r) &' = Dk, 3 W0, (5)
0 e=1

. E
/ AS(r') dr' = £S5, 3 07, (6)
0

e=1

where

ASn:—<2—Sn(r’) d ) ©

‘I’en = /0 "i’(ﬁ_(ﬁi(z, T,) dz.

—o0 €3(2z,)p(2, 1)

and

5= [ o) i
0

The range integrals of the EOF coefficients themselves are assumed to be zero mean
Gaussian random variables. Thus the range integrals are assumed to cover many
correlation lengths of the individual g.. If the variance of the individual g, is agze,
then the variance of the range integral is

age = /0 dr'/o dr"(ge(r")ge(r"))

~ 0'35 rle, (7)

where £, is the correlation scale of the horizontal variability of the EOF coefficient
ge- If this horizontal variability is homogeneous with known power spectrum P,,,
then the variance may be expressed in terms of the spectral integral [4]

[eo}
ol = 7'2/ dk P, (k)sinc*(kr/2),
— 00

Je

where the spectral integral of the power spectrum P with the sinc? function yields
the exact ratio of the correlation length scale to the range £./r.

-4 -
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2.2 The Short Time Average of the received intensity

The Short Time Average (STA) ! of the square of Eq. (1) is given by the expression
o Jo k(=R () !
\/fo k(1) dr’ J§ ks, (r') dr’

dl.dz e—iw1 (t=Snr) eiwz (t=Smr)

G (25) B (25) 90 (2) b (2)

N N
p?S'TA(taTrz) = ZZ

Aken—Akcm'i‘Wl ASen—wQASem) (8)

b

X

I
f1

where Ak, = Ak Ve, ASen, = AS, ¥, and Aw is the bandwidth of interest.

Assuming the g, are uncorrelated, the expected value of the STA of the signal
intensity is

.y i fv; eijo’k;;(r')-kg,(r') dr’
. psta(t,r,2)) ~ 2r
nmim=1 \/Jg B (r) d= 5 ke, (r) dr’

b7 (2:)¢(2:) 65 (2) 6 (2)

Aw Aw . .
X dw, dw, e~ 1 (t—Snr)etwg(t—Sm'r)
~ —-Aw —Aw
E
X H e‘(Aken“Akem+w1ASen—-szSem)zozerlg/Z- (9)
ex=]

Note in Eq. (9) that the deviations of the slowness and the horizontal wavenumber
are entirely correlated. This is a consequence of the fact that these deviations are
both derived under a local approximation and are both the result of linear operations
on Ac.

Squaring the argument of the exponent on the third line of Eq. (9) and collecting
like terms, we see that the decorrelation between adjacent modes at time ¢ and range
7 is accounted for through the evaluation of the following two dimensional frequency

integration
. o2 Aw . s e 92
Prm rt(wo, Aw) e Fnm dw, e ' (- "T)(:’"w1 e 1
T -Aw
Aw . 2 2 202
X du eiw2(t=Smr)g=w2®} gnwa®, o—uf05, - (10)
~Aw

The short time average is taken over times sufficiently long to cancel out the 2x carrier ripples
in the waveform which arise when it is squared. Thus the short time average is taken over time
scales proportional to 1/f°.
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Ol = D (OkZ =2 D ken Dkem + DR2)0, 7Le/2
e% = Z(Aken - Akem) A Senogcrfe)
0} = Y ASZolrl/2
@% = Z(Akem - Aken)A Sema_ge TEC

e

0% = Y ASen A Semolre,

0%, Y AS2 0k 1L /2.

The intermodal decorrelation term associated with ©,,, is the modal decorrelation
at w, which has been derived previously [3]. The quadratic decorrelation terms 01,
and Oy, can lead to pulse spreading due to decorrelation of adjacent frequencies; the
way to see this is that in the absence of the linear decorrelation terms @, when
011,22 are on the order of one over the bandwidth, 1/ A w, the frequency integrals
are asymptotically evaluated as the characteristic function

Aw .
duwy e~ (t=50r)g=wi®h — | [ /@2 e~ (t=Sur)*/40%;
-Aw

The frequency integrals in Eq. (10) may be performed in closed form if instead
of modeling the signal as absolutely band limited, we adopt the use of a Gaussian
amplitude spectrum on the signal of effective width Aw. Then Eq. (10) may be

rewritten as

-02 it — w2 2 _; _ _ 2 _ 202
p?zm,r,t(wmAw) = e Onm/ dw; e wi (20w e 1wy (¢ Snr)e u/]@le ws @2,
—00

S .
% / dw, e—-wg/Zsz eiw2 (t—Smr)e—wzeg emwg@%ze—wgegz (11)
—00
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Eq. (11) may be evaluated in closed form. The resulting expression for the STA of
the received intensity is (see Annex A for the details of the derivation,)

. N N ot Jo Bk (r') dr’
P O DN Y Py J ey P
x\/7/(02,+1/2 A w2)
><\/7r/((9§1 +1/28 0% - 04,/(403, + 2/ Aw?))

03 — (t = Tn(1))? — 1203(t — 7:n(r))
xexp( oL 1 A )

(287 (25)7 (2) b (2)

2102, (t—1mm (r)) —20202 . 2
[@% - 125:(-9%2+(2/))Aw2 212 (¢~ Tn("))]

40}, +2/ Aw? — 04,/(03, +1/2Aw2%) |’ (12)

X exp

where 7, (1) = [5 Spm(7) dr'.

Eq. (12) evaluates the expected value of the STA of the received intensity. It is also
of interest to evaluate the fluctuations of this STA as a function of sound channel
variability. What is desired is

odralt,r,z) = (phra(t,r, 2)) - (pera(t, 7, 2))?

which may be written explicitly as

N

N N N
O5Ta X ATTY TN TN 3 80280 (260 (25) 8% (20)82 ()% (2)6% (2)62. ()

n=1m=1n'=1m'=1
eifor(kz(r')+k;,(r'))—(k;(r')+k;,(r')) dr'
X
s k(') dr! [T kO, (r) dr! [T ke (7Y dr! [T kO (r!) dr'
0 n 0 "n 0 Ym 0 “m

oo oo ) .
% / duw, / dw, e—wf/Zsze—zwl (t—‘rn(r))e—wg/Zsz gt (t—Smr)
—00

-0

co 00 . .
X/ dwlf/ dwzl e—wf,/2sze—zw1/(t~rn/(r))e—w§,/2Aw2ezw2,(t_-rm,(r))
- -

E
X JT exp {=(Dken + Dkens = (Dkem + Dkomr) + w1 A Son + wpr A Sos

e=1

(@2 & Sem + w31 & S22 71./2)
= (Phralt,r, ) (13)

| Using the same technique used for the ensemble average, the second moment of the
ensemble average may be evaluated in closed form. The result is given in Annex B.

-1
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Narrow band approximation Type 0 vs Fourier (1500 Hz, 75 Hz BW, 10 km)
220 | — T T T T

——  Fourier synthesis
200 - ———  Type 0 NB approx |

180

160

iy

B

(=
T

1

(3

_A
o
S

Depth (m)
8

o

-0.05 V] 0.05 0.1 0.15 02 0.25
Time after Mode 3 arrival (s)

Figure 1 Comparison between envelope of the Fourier synthesized impulse response
and the envelope of the Type 0 narrow band approzimation. Agreement in general
is poor because the Type 0 narrow band approzimation neglects the dispersion of the
individual modal arrivals.

Note that the scintillation index : may be obtained from o 4(¢,7,2) according to

the relation )
= USTA(tv 7'7 Z)

B <p?§TA(t7 7 Z)>2'
This measure is often used to charcaterize signal variability in a random channel.

2.3 Dispersive effects

In the derivations in the previous section it has been assumed that the unperturbed
impulse response in the waveguide is well approximated as

—i{wot—k2r)

N
p(t,r,z) ~ R<(2 1/2 i—¢n 03 25 )Pn(Wo,
p(t,r ') {( ) ; T (wo, 25 )#n(wo, 2)

X / dwe—iw(t—snr)e—w2/2Aw2} : (14)

—0oC
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—100} 4
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60
1480 1480 1500 1510 1520 1530 1540 1550 1560 1570

Figure 2 Shallow water sound speed profile used in this ezample. The profile is
downward refracting and overlies a slow isospeed sediment 5 m thick.

which can be evaluated in closed form as

cos(—i(wot — k2r))e~(t=5nr)?0u?/2

N
t7 b jal 2 A ¢TL 09y ~8 ¢n w07 . 15
p(t,r z) ™ wngl \/E%—T (w z5) ( Z) (15)

In reality Eq. (15), which we call the Type 0 narrow band approximation, is highly
inaccurate since it neglects the pulse dispersion in the individual modes which is so
important for determining the coherent interference pattern as a function of depth
and time at reasonable ranges. This can be seen in Figure 1 where the envelope
of the Fourier synthesized Green’s function at 1500 Hz and 75 Hz of bandwidth
for a shallow water waveguide is compared to the envelope of the Type 0 narrow
band approximation. The approximation agrees poorly because it simply places
each mode at an arrival time determined by the modal slowness S,, neglecting the
spreading of the mode arrivals in time which leads to the ray-like interference effect
seen in the Fourier synthesized result.

The sound speed profile for the shallow water environment is shown in Figure 2.
Since the slow sediment layer carries the first two modes at 1500 Hz, the travel
times in this discussion are referred to the first arriving waterborne mode, Mode 3.
The dispersion curves for the waveguide are illustrated in Figure 3, and show typical
shallow water behavior. While the phase speed of the first two modes is quite slow
due to the slow sediment layer, the phase speeds for modes 3 — 70 increase with
increasing mode number, as expected. The group speed of the first two modes is
also slow due to the fact that they are trapped in the slow sediment, but as expected

-9 -
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Modal dispersion for shallow water 9 ko? Group and phase speed for shallow water environment

25 T T T T T T " T T T

speed (mis)

—5

Figure 3 The dispersion curves for the shallow water waveguide at 1500 Hz. The
left panel is shows the curvature term 8%k/dw?, while the right panel showns the
phase and group speed. 70 modes are supported, the first two of which live in the
sediment layer.

the waterborne modes have decreasing group speed for increasing mode number. The
modal dispersion term is negative, indicating that at higher frequencies a given mode
is less slow than it is at lower frequencies

Sn(w + wo) = Sn(wo) — | Dn| (w — w,)/2,

which we have also observed to be typical shallow water behavior. For this reason
time series in shallow water waveguides arrive in an inverse frequency chirp, with
the highest frequencies arriving first.

2.3.1 Type 1 narrow band approximation

A better approximation to the waveguide Green’s function is obtained when the
second order modal dispersion term D, = M is included in the phase argument
of the complex exponential

—t(wot—kZr)
p(t,T, Z) = {(277 1/2 Z \/—— ¢n(woazs)¢n(woa'z)

n=1

™ /oo dwe—-iw(t—(Sn+an'r/2)e——w2/2Aw2}‘ (16)

—00

This frequency integral can also be evaluated in closed form to obtain what we call
a first order narrow band approximation

- 10 -
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Narrow band approximation Type 1 vs Fourier (1500 Hz, 75 Hz BW, 10 km)

220 T T T T T
i ——  Fourier synthesis
200 —  Typet approx | -
180} ]
160} e
140 \ \ \ N ]
' S A NS
E 120 /4\
<
[=%
S 100
80

40| \

20

AN e AL /Al e

-0.05 0 0.05 0.1 0.15 0.2 0.25
Time after Mode 3 arrival (s)

Figure 4 The performance of the Type 1 narrow band approzimation is superior
to the Type 0 shown in Figure 1. The effects of modal dispersion are now accurately
modeled, leading to better estimates of the modal interference which gives the true
coherent propagation structure.

—t(wot—kSr)
trz) = REEOVEY e g (wo, 7)bn(wo, 2)
p(ts7, ) {(n nzl a2,

27 ox (t = Spr)? (17)
Aw2 —iD,r P 2(Aw=% - iD,r) ’
As shown in Figure 4, the first order narrow band approximation for the waveguide

Green’s function does a better job of replicating the coherent arrival structure of the
Fourier synthesized result.

The importance of modal dispersion implies that a modal arrival time is an abstrac-
tion which in practice does not exist. Instead, the modes disperse sufficiently such
that they always overlap their neighbors in time. This means there is a fundamental
lack of resolution of the modal arrival time which is introduced by the waveguide
and which in general bandwidth will not remove. The modal dispersion which al-
lows the strong interference between modes spreads the arrival time of an individual

- 11 -
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Contributions of individua! modes (20 m SD, 50 m RD, 1500 Hz, 756 Hz BW)

T I T T T

80
° e
60 e e —
e
ol et
50 —_— M
— e ee—
w
e
240 = j_&g
30 . -
—x Fourier synthesis
——  Type approx
20
10 S
. Y :
-0.05 0 0.05 0.1 0.15 02 0.25

Time after Mode 3 arrival (s)

Figure 5 The envelopes of the individual modal contributions to the total response
received at a depth of 50 m. This figure showns that the estimation of modal arrival
times is not meaningful at this frequency and range. Individual mode envelopes are
highly overlapped due to dispersion of the individual modes. The Type 1 narrow
band approzimation shown in red does a fairly good job of predicting the response,
but under or over estimates individual model arrivals due to the assumption that the

mode shapes are independent of frequency.

mode out over times large with respect to the time scales of total summed response.
This effect is illustrated in Figure 5, where the envelopes of the individual modal
arrivals for a receiver at a depth of 50 m in the water column are shown for all the
propagating modes, along with the envelope of the coherent sum which is related to
what would be measured in an experiment. The black curves are the exact Fourier
synthesized results, which extend up to 82 modes over the entire frequency band of
the synthesis, while the red curves are the the Type 1 narrow band approximation,
which is obtained by assuming that the 70 modes present at the center frequency
exist over the entire frequency band of interest (instead there are 68 modes at 1425

Hz and 75 at 1575 Hz.)

From the results shown in Figure 5 it is clear that an experimentally measured
quantity such as the arrival time of a large pulse in the total time series has no

- 12 -
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2.3.2 Type 2 narrow band approximation

Frequency derivative of mode shapes at 1500 Hz
[ —T T .

-40

(RN
NN

-60

!f‘

Depth (m)

-80

-120F

taopE AN

10 20 30 40
Mode number

Figure 7 The frequency derivative of the shallow water mode shapes at 1500 Hz.
The mode shapes are rather strong functions of frequency.

The fact that the mode shapes can be strong functions of frequency even in relatively
narrow frequency bands compared to the center frequency of interest implies that a
first order Taylor series correction to the modes shapes of the form

N ~t(wot—kST) 8¢ (Z) 6¢ (
1/2 E_— n n zs)
(27) 1; \/@ Fn(wo, 2s) 0w . + $n(w,, 2) EY o
< [t S ), o R

can be added inside the brackets of Eq. (16) to obtain improved performance.

The numerical values of 8¢/0w as determined by finite differences for our example
waveguide are illustrated as a function of depth and mode number in Figure 7. Using
these values Eq. (18) can be evaluated to obtain the complex representation of the
correction which when placed in the brackets of Eq. (17) leads to a second order or

- 14 —
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Narrow band approximation Type 2 vs Fourier (1500 Hz, 75 Hz BW, 10 km)

220 T T T T T
————  Fourier synthesis
200 —  Type2 approx | -
180+ g
160} ]
140 % :
M Za
E 120 /4\
£
§ 100
AV A AN c—
80/ N ANV DN~
&0 A N ——
40
20
0 [ _./\,I\_ 1 A L
-0.05 0 0.05 0.1 0.15 0.2 0.25

Time after Mode 3 arrival (s)

Figure 8 The Type 2 narrow band approzimation bears a strong resemblance to
the true channel impulse response. For this reason the theory of time series stability
developed in this report is based on the Type 2 narrow band approzimation.

Type 2 narrow band approximation

N —i{wot—k2r) . - S,7)?
p(t,’l‘, z) =~ (27")1/2%{2 i \/76_07 Aw_zz_ iDr exp {—Z(ZX(L‘QS—— l)D 7‘)}
n=1 n " "
ot o (S50 ) 25891 )
i(Sur — 1) ) On(s) )}}
T )

T fulwor2) <¢n(wo,zs>+ (

2(Aw=?% —iD,7) Ow

The performance of the Type 2 narrow band approximation is illustrated in Figure 8
superimposed on the Fourier synthesized result. This agreement is considered to be
sufficiently good to faithfully model the overall characteristics of the time domain
Green’s function of a waveguide. In Figure 9 the constituent modal components
of the total time series for a receiver depth of 50 m are illustrated for both the
Fourier synthesized Green’s function and the Type 2 narrow band approximation.

_.15_
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Contributions of individual modes (20 m SD, 50 m RD, 1500 Hz, 75 Hz BW)

T

80
70 —
60 —
e
50 ;_l___\ ~TT

%t

30
Fourier synthesis
20 Type 2 NB approx
10 ¥
£ A
. e
-0.05 o 0.05 0.1 0.15 0.2 0.25

Time after Mode 3 arrival (s)

Figure 9 The performance of the Type 2 narrow band approzimation as a function
of mode number. These results are significantly better than the Type 1 results in
Figure 5.

Comparison with Figure 5 shows the Type 2 approximation does a better job of
modeling the temporal characteristics of the intermediate mode numbers, allowing
more accurate modeling of the total response.

2.4 Inclusion of dispersive effects in expressions for p%p A

The dispersive effects associated with the Type 1 narrow band approximation are
introduced into Eq. (12) and Eq. (34) by making the substitution

1/2Aw* - 1/2 Aw? —iD,r/2.

This substitution neglects the effect of terms of the form AD,, which are assumed
to be negligible. This approximation is generally found to be valid, as will be shown
in the results section. The modification to Eq. (12) to conform to the Type 2
narrow band approximation is more complicated and is therefore presented in detail

in Annex C.
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2.5 Time Reversal Mirror performance

The theory described in this section to model waveform stability can be used as the
basis for a study on the performance of a Time Reversal Mirror (TRM) [5, 6, 7]. A
TRM receives a source pulse on a VLA, reverses it in time and rebroadcasts it. At
and near the spatial location of the original source a substantial degree of focusing is
found to occur. If we assume that the TRM time series are measured for an unper-
turbed waveguide, we can study the effect of the random sound speed fluctuations
on the focus performance. Under the Type 1 narrow band approximation, the time
series measured at a depth z and range r from a source at zero range and a depth

Zs is

p(t, z, 'l"IZs) ~ Z ¢n(zs)¢n(2_) /dw e_iwt+(k+(w—wo)Sn+(w—wo)2/2Dn)Te—(w—-wo)z/Qsz

Vknr

N Z¢’n(zs)¢n(z)e—i(wt—kor)/dwe—z’w(t—Snr)e——wz(1/2Aw2—iDnr/2)' (20)
Vk,r

In a TRM, the received time series is reversed and re-broadcast at the receiver
depths. A non-causal time reversal operation is equivalent to a conjugation operation

in the frequency domain
p(=t) = F7H{p"(w)} .

Assuming that the re-broadcast time series is scaled by a factor of 7/p(z) to remove
the effects of cylindrical spreading to and from the source position and to enable the
invocation of modal orthogonality in subsequent steps, the complex spectrum of the

TRM sources is

¢n(z$ d)n(Z) —zknr —wanr ~w?(1/28w2 +iDpr /2
‘/—Z Vknp(2) ’ ( .

so that the complex spectrum received through a perturbed waveguide in the vicinity
of the source range and depth is

Pw,2) =

(pn(zs)d)m zs + Az)¢n(2N)¢m(zN)
w, Az, Ar) =
A )= ZEZ Vkiknp(zn)
Xetw((Sm+ASm)(r+Ar))e wanrez((km+Akm)(r+Ar))e—ik:‘1r

xe-—w2(—iDm(r+Ar)/2)e—w2(1/2Aw2+iDnr/2). (21)
In Eq. (21) the quantities Ak,, and AS,, indicate that sound speed perturbations
have been introduced into the waveguide since the measurement of the impulse
response p(t, z,r|zs). It is assumed that the dispersion D,, is unaffected by these
sound speed perturbations. Since we are interested in evaluating the TRM refocusing
performance in the presence of water column variability rather that performance
as a function of the number and distribution of the TRM sources, we make the
assumption that the TRM sources are fully depth sampling (even into the bottom
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for bottom penetrating modes included in the Type 1 narrow band approximation,)
so that the orthogonality of the modes may be exploited. We also assume that the
mode shapes are not strong enough functions of the water column variability for the
orthogonality relation to be seriously degraded. Under these assumptions the sum
over N becomes an integral which when evaluated eliminates off-diagonal terms and
results in the received spectrum

plw, Az, Ar) = Z ¢n(zs)¢|nk(z|s + AZ)eiknAreiAkn(r-i-Ar)einnAreiw/_\Sn(r-{-Ar)
n n
Xe—ZS{kn}re—ﬁ{kn}Are—w2/2Aw2 eisznAr/2. (22)

Discarding the unimportant terms e=S{kn}Ar and e@’DndT/2 the inverse Fourier
transform of Eq. (22) yields the complex time series as a function of time and
defocused range Ar and depth Az from the original source range and depth

p(t, Bz, Ar) = et S ¢n(25)¢l7’2:(2|s + D2) ikyir gitka(r+Ar) =28 {kn}r

% / dioye= i1 (t=Sn Br=ASn(r4 A7) =i (2047 | (23)

Since the TRM defined here is non-causal, ¢ is the defocusing time about zero time,
when the ideal TRM concentrates its energy in depth and range about the original
source position.

The expected value of the STA of the square of Eq. (23) is analogous to Eq. (9)
¢i(kn—km)Ar o =2(3{kn} +3{km })7

N N
(p%RM(tv AT, AZ)) ~ 27 Z Z lk ' Ik I ¢n(zs)¢m(zs)
n=1m=1 niltm
Aw Aw R X
Xoulzs + 82)gm(zo+ 82) [ din [ 7 dun erlimSnan) glali=Sma
—Aw —Aw
E
% H e~ (Bken—Okemtwr ASen—waASem)?ol, rl¢/2e—wf/2sze—w§/2Aw2 (24,)

e=1
so that a result equivalent to Eq. (12) is easily determined as
N N ilkn—km)Ar
<p%"RM(t7 AT, AZ)} ~ 97 Z Z WC—Z(%{kn}+3‘{km})r

n=1m=1

X8 (25)65 (25)65 (25 + D2)$5 (25 A 2)\[71/(0F, + 1/2 Aw?)
x\/1/(82, + 1/2 Aw? — 0%,/(40%, + 2/ Aw?))

oo (@1 (= Sm AT)? — i203(t = S AT)
P 402, + 2/ Aw?

: 2
9 2402, (t—S,Ar)—20202, | .
0 — —12 4@52";_2/5012 212 4 §(t— S, Ar)

40%, +2/ Aw? — 04,/(0%,+ 1/2 A w?)

X exp (25)
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Results

3.1 Internal wave characteristics in shallow water

Internal wave realizations were computed using the internal wave realization gener-
ator in the PROSIM ([8] simulation package. The internal wave realization generator
was executed using an energy level of 320 mZcph, a default buoyancy frequency
profile as given in Elliot et. al. [9], and a typical summer downward refracting shal-
low water profile as measured north of Formica in the Tyrrhenian sea during the
PROSIM ’97 experiment [10]. The resulting perturbations of the sound speed from
the background profile are illustrated in the left panel of Figure 10. In general the
results show that the strongest perturbations are found in the vicinity of the transi-
tion region in the sound speed between the iso-velocity warm surface layer and the
colder deeper water. The first 9 EOF’s obtained from this realization are illustrated
in the right panel of the same figure. The EOF mode shapes are in general confined
to the upper third of the water column, with the shallowest penetration for the
lowest order, and most energetic, modes. The EOF mode shapes shown obey the
relation [92(z)dz = 1.

EOF mode shapes for shallow wawer (1 GM)

SSP perusbations from W moded (1 GM mid attude)

ul

100} . E

@mqmmawng
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i

e ]
o

35 [ 05 1

«
~
>
o

10 20 25 £

15 15 2 25
Range (k) Mode shape amplitude (14 m + 5 n)

Figure 10 Internal wave realization and first 9 EOFs for the shallow water envi-
ronment and a spectrum level of 1 GM.

The standard deviation of the EOF power expressed in m/s is illustrated in the left
panel of Figure 11. The rms amplitude of the first EOF is approximately 0.6 m/s,
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RMS sound spead vanability In shallow water EOFs Correlaton length scale of shallow water EOFs
10 T T r

a, (mis)

Figure 11 RMS amplitude and correlation length scale of the shallow water EOFs.

while for the 9th EOF it is about one order of magnitude smaller. The rms excursion
of an EOF as a function of depth is obtained by multiplying the rms amplitude of
the mode function (units m/s) together with the mode shape (units 1/,/m) scaled
by the square root of the total water column depth D in meters. Thus the maximum
rms excursion of the first EOF is approximately 2.5 m/s, while for the 9th EOF it
is only 0.13 m/s. The correlation length scale £ of the EOFs is indicated in the
right panel of Figure 11. These results indicate that the correlation length scale of
the EOFs decreases with increasing mode number, with £; ~ 3500 m for the first
EOF and only £y ~ 80 m for the 9th. The correlation length scale was estimated by
fitting a power law spectrum of the form

Py (k) oc (1+k%60)™

to the spatial spectrum of the range dependent EOF coefficients

2

H

P, (k) ~ “/ dz ge(r)e*r

where the range dependent coefficients g are determined according to Eq. (4). An
example of the quality of one of these fits is given in Figure 12.

3.2 Waveform stability in shallow water

Using the EOF properties obtained from the internal wave realization in the previous
section, the stability of the arrival time envelope for the range independent shallow
water waveguide whos properties are illustrated in Figures 2 and 3 has been com-
puted using Eq. (12). The results are illustrated in Figure 13. The top panel shows
the magnitude of the complex envelope of the unperturbed waveguide response for
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Figure 12 The Direct Method power spectral estimate of the range dependent EOF
coefficient of 15 and the power law fit for the correlation length scale, determined in
this case to be 138 m.

the Type 2 narrow band approximation. The second panel illustrates the ensemble
average of the STA of the intensity as estimated over 50 realizations of perturbed
sound speed profiles using a modified form of Eq. (19),

N o—i(wot~kBr) | 9 — §Pp)2
~ 1/2 € T - (t nT)
p(t, T,Z) o~ (27T) ® {T; \/IC,OL_’I‘ Ao-2 1 iDEr exp { Q(Aw‘z + ng,,-)

where

X

i(S2r — 6, (2
{M%’ZS) <¢”(w°’z) ’ (2(&2:; +ig£v~)) Qbanf ) wo)

i(SEr - 1) )aqsn(zs) )}}

+ #nlwo, 2) (¢”(“’°’Zs)+ (2(Aw—2+ iDEr)) " ow

(26)

E
kb= kp + Dky Y ¥.,7.,

e=1

E
Sﬁ = Sn + ASnZ ‘Ilenge:

e=]
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Unperturbed waveform (1500 Hz, 75 Hz BW, 10 km)
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Figure 13 The unperturbed (top), Monte-Carlo (middle) and closed form (bottom,)
time-depth arrival structure for a VLA 10 km away from a source in the shallow
water waveguide. The uncertainty introduced by the sound speed fluctuations causes
a decrease in the ensemble average of the intensity, shown at early time in the lower
two panels, as compared to the unperturbed result in the top panel. The agreement
between the Monte-Carlo and the closed form result indicates that the closed form
theory captures the variability without requiring Fourier synthesis or Monte-Carlo

averaging.

and

E

D} =Dn+AD, Y ¥,,3..

ex]
The lowest panel is the closed form prediction given by Eq. (12). The excellent
agreement between the Monte-Carlo result and the closed form result indicates that
the omission of terms caused by AD, in the closed form result have not seriously
affected its accuracy (these terms were included in the Monte-Carlo result.) The
expected value of the STA of the received intensity estimated by either means as-
sumes the absence of mode coupling and the adiabaticity of the sound propagation
through the sound speed perturbations.

The results in Figure 13 indicate that the sound speed perturbations caused by
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internal wave activity have the strongest influence on the lowest order modes which
contribute to the beginning of the time series. This is confirmed by Figure 14,
which illustrates the contribution of the SSP perturbation EOFs to the various mode
numbers for unity EOF variance age. The results show that the phase uncertainty
Akey, introduced by the EOFs most strongly affects modes 3 — 40, with low EOF
indicies introducing more uncertainty than higher ones. The slowness uncertainty
ASe, and the dispersion uncertainty De, are confined between modes 15 and 45,
with the higher EOF indicies contributing more to the uncertainty. The fact that
the lower order modes are strongly affected by the EOFs indicates that the earlier
part of the time series is less predictable, as the lower two panels in Figure 13 show.
Conversely, since modal indicies between 45 and 70 are relatively unaffected by any
of the EOFs, the latter part of the time series is shown to be highly predictable.

A k for each mode caused by the 9 EOFs

EOF
rad s/m"2.5

20 30 40 50
A S for sach mode caused by the @ EOFs

= . 3 q La ‘ P 3 . T y ]
ﬁ i . b X1 L *
w o/ - . b
5] | :
4 . %\;
2r .
X 3 G . 3
10 20 30 40 50 60 70
A D for each mode caused by the 9 EOFs x107'°
T 13 - T 1
) ©
o
o - E
- . g
] 2
s S Y L Iy
10 20 30 50 60 70

Mode number

Figure 14 The perturbations Aker, (t0p), ASer, (middle) and AD., (bottom),
caused by the 9 EOFs. The variability affects the lower order modes much more
strongly than the higher order modes. This ezplains the fact that the ensemble av-
erage of the intensity shows lower levels and more smoothing for the early arriving
low order modes, but high predictability for the late arriving modes.
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Unperturbed TRM refocusing at source range (1500 Hz, 150 Hz BW, 10 km)
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Figure 15 TRM defocusing in shallow water. The top plot shows the unperturbed
focus performance in the time-depth plane, the middle plot the Monte-Carlo average,
and the lower plot the closed form solution. Significant defocusing in the ensemble
average sense is expected in the case where the sound speed perturbations are present.

3.3 TRM performance degradation in shallow water

In Figure 15 the performance degradation of the shallow water TRM predicted by
Eq. (24) is illustrated in the depth-time plane. The top panel indicates the perfor-
mance of the ideal TRM, which is well defined in depth with a temporal resolution
6t approximately equal to one over the bandwidth (in this case +150 Hz rather than
the £75 Hz used in the previous examples.) The depth resolution is determined by
the number of propagating modes and the unrecovered loss of the higher order modes
which the TRM cannot eliminate (although a model based TRM which artificially
amplifies the higher order modes could recover some of the lost vertical resolution.)
In the second panel of Figure 15 the deterioration of the TRM performance is shown
in the Monte-Carlo estimate of the TRM depth time response estimated from 50
realizations of environmental perturbations drawn from the distribution parameters
derived in the EOF section. A substantial loss in resolution is observed, with signifi-
cant depth-time spreading along an ambiguous ridge extending from the true source
depth down in space-time at an angle determined by the particular physics of the
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Figure 16 Internal wave realization for the Munk profile (left) at 1 GM. The right
plot shows the first 6 EOFs The perturbations and the mode shapes are confined to
the water column above the sound speed azis.

propagation through the perturbed waveguide. The lowest panel shows that the
loss in performance is well modeled by the closed form expression in Eq. (24). The
results seem to indicate that TRM performance is more strongly affected by waveg-
uide variability than the time series themselves, which were shown in the previous
section to be less significantly affected.

3.4 Internal wave characteristics in a SOFAR channel

To support the study of waveform predictability in the deep ocean, the PROSIM
package was used to generate a 1 GM internal wave realization for a deep water
Munk profile [11]. The realization is illustrated in Figure 16 along with the first 6
EOF mode shapes. The EOF mode shapes are confined to the upper 40% of the wa-
ter column, with the most energetic confined to the upper 20%. The corresponding
standard deviation in m/s and correlation length scales are illustrated in Figure 17
The standard deviations, shown in the left panel, are approximately one order of
magnitude smaller than in the shallow water case, while the corresponding correla-
tion length scales, shown in the right panel, are 1 — 2 orders of magnitude larger,
with the largest, for the first EOF, being approximately 100 km. As explained in
the theory section, the longer the correlation length scale £, the more uncertainty is
accumulated along a path (assumption always being that path length is longer than
correlation length.) However, the uncertainty accumulated is also proportional to
the power in the EOFs, which in this case is much lower than it is in shallow water.

The EOF rms sound speed perturbations for the Munk profile drop off much faster
than for the shallow water case. For this reason only 6 EOF's were included in the
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analysis. Even so there is a drop of almost one order of magnitude between the rms
sound speed of the 5th and 6th EOF. The rms sound speed of the 6th EOF is only
0.009 m/s, while the first EOF has an rms sound speed of almost 0.13 m/s. The
correlation length scale of the 6th EOF is only 6 km.

AMS sound speed variabillty in SOFAR EOFs Comeiation lsngth scale of sofar EOFs

}m)

EOF or

Figure 17 The RMS amplitude and correlation length scale of the EOFs for the
Munk profile. The longest correlation length is 100 km.

The evaluation of the internal wave realization for the Munk profile resulted in
sound speed perturbations which were noisier than the shallow water results. This
noisyness is not considered to be endemic to the PROSIM model, nor is it considered
to be harmful to the validity of the results which are based on this realization. The
effect of the noisyness is that the EOFs have higher spatial frequency oscillations
superimposed on them which are not considered to be meaningful. While in the
subsequent section these oscillations will be shown to introduce some noise into the
estimates of the perturbations of the modal dispersion for the 5th and 6th EOF,
the contributions of these EOF’s to the modal dispersion is so low, and the overall
importance of the modal dispersion in general is so negligible, that the results were
used in their present form without introducing errors.

3.5 Waveform stability in a SOFAR channel

The Type 2 narrow band approximation was used to estimate the impulse response
of the Munk (SOFAR) profile at a receiver range of 1000 km at a center frequency
of 100 Hz. The envelope of the resulting time series for 3 Hz of bandwidth is shown
along with the envelope of the Fourier synthesized impulse response in Figure 18.
The Type 2 narrow band approximation agrees very well for late times, when the
axial mode arrivals form the SOFAR crescendo. At earlier times the agreement
quantitatively is less good, as the narrow band approximation fails to accurately
model the wavefront curvature of the arrival time series near the turning point

— 26 —




SACLANTCEN SR-319

depth. However, as before, the agreement is considered to be good enough that the
major characteristics of the SOFAR channel impulse response have been captured
by the narrow band approximation.

Narrow band approximation (100 Hz, 3 Hz BW, 1000 km)
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Figure 18 Performance of the Type 2 narrow band approzimation for the SOFAR
channel at 100 Hz and 3 Hz of bandwidth. The agreement is good qualitatively at early
times, and quantitatively at late times in the prozimity of the SOFAR crescendo.

The time-depth response of the SOFAR channel is in most ways the opposite of
the shallow water channel. Inspection of the group speeds and modal dispersion in
Figure 19 show why. In the SOFAR channel, the group speed of the higher order
modes is faster than the group speed of the first mode, rather than slower as in the
shallow water waveguide. In addition, the modal dispersion is positive rather than
negative. The result is that in the SOFAR waveguide the higher frequencies are
slower than the lower frequencies, so that the SOFAR crescendo is an up-chirp. The
overall result is that the impulse response of the SOFAR channel is characterized
by the early arrival of high-angle precursors, with a final crescendo on the SOFAR
axis associated with the lowest order modes.

Using the internal wave EOF mode shapes, correlation length scales and power ob-

tained in the previous section, the ensemble average of the STA of the received
intensity in a SOFAR channel was predicted by a Monte-Carlo average over 50 re-
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Figure 19 The modal dispersion 8*k/dw? (left) and the phase (red) and group
speed (blue) of the SOFAR channel. Positive modal dispersion implies that arrivals
are up-chirps (arrive low frequencies first.)

alizations and through the evaluation of Eq. (12). The result is shown in Figure 20.
The upper panel is the unperturbed impulse response from the Type 2 narrow band
approximation, the middle panel is the Monte-Carlo average while the lowest panel
is the closed form result. The results show that like the shallow water case, it is the
lowest order modes which have the most uncertainty, reflected in lower levels for the
ensemble averaged STA of intensity versus the unperturbed levels at late times on
the SOFAR axis. Thus the theory predicts uncertainty in the crescendo, but relative
stability of the high angle precursors. Inspection of the modal perturbations to the
wavenumbers, slownesses and modal dispersion in Figure 21 show the reason why.
As in shallow water, the modal phase, shown in the upper panel, is most strongly
perturbed by the EOFs in the lower order modes. The slowness perturbations and
the modal dispersion perturbations are more strongly felt by the higher order modes,
but the overall level of these perturbations is apparently insufficient to cause notice-
able spreading in time-depth of the early arrivals 2. On the other hand, the phase
perturbation is evidently sufficiently strong that the predictability of the crescendo
structure, when many of the lower order modes arrive at virtually the same time, is
negatively affected. This is due to the fact that the presence at one time of many
modes makes the coherent sum sensitive to the phase fluctuations introduced by
the waveguide variability. Since the fluctuations are in detail unpredictable, the
ensemble average has less structure and lower peak values than the unperturbed
result.

2The noise in the estimates of A Dy, perturbation for e = 5,6, which were determined by running
ORCA for the Munk profile with and without an EOF mode shape perturbation, is not considered
real. However, comparison between the Monte-Carlo result, which includes this term, and the closed
form result, which ignores it, showns that ADe, in general are inconsequential. For this reason the
results and conclusions of this section are not affected by these noisy estimates
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Unperturbed waveform (100 Hz, 3 Hz BW, 1000 km)
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Figure 20 The unperturbed (top), Monte-Carlo ensemble average of the perturbed
(middle) and closed form ensemble average of the perturbed SOFAR channel with
1 GM internal wave fluctuations. The fluctuations affect the predictability of the
SOFAR crescendo, reducing the ezpected value of the intensity since the individual
modal arrivals which constitute the crescendo are unpredictable with respect to one
another. The high angle precursors are highly predictable as their propagation phase
is less strongly affected.

While the results shown in Figure 20 for the predictability of a SOFAR crescendo
are interesting, they do not reflect the true degree of variability which is known to
exist in long range time series in the real ocean. The spatial, temporal and angu-
lar characteristics of long-range deep water transmissions have been the subject of
significant study in recent years [12, 13]. In general it has been shown that mode
coupling effects, which are ignored in the theory presented here, are important for
explaining most of the variability in time series observed from field experiments.
Thus predictions for the variability of the time-depth envelope of long-range SO-
FAR channel transmissions obtained with the present theory cannot predict several
important features commonly observed in experiments, such as the presence at late
time of significant energy in higher order modes, and the overall levels of the variabil-
ity observed for a fixed value of 1 GM in an internal wave field using a Munk sound
speed profile. However, some of the other features observed in the data, such as the
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Figure 21 The perturbations to the phase Nk, (top), slowness AS., (middle)
and dispersion AD.,, (bottom) caused by the internal wave sound speed perturbation
EQFs in the SOFAR channel. The phase uncertainty is only present for the lower
order modes. While the higher order modes suffer some slowness uncertainty, their
phase are sufficiently insensitive to the sound speed fluctuations so that their coherent
sum remains highly predictable. The noise in the perturbations to the various modes
caused by the 5th and 6th FOFS is wrong but does not effect the results, as explained
in the text.

relative stability of the precursor arrivals, and the relatively unpredictable nature of
the final crescendo, are predicted by the theory. Thus we view the contribution of
the theory presented here to be the theoretical corroboration of the relative stability
of the early arrivals under essentially a perturbation analysis. However, the levels
of the waveform predictability estimated here are too high, and do not account for
the observations of late arrivals of higher order modal energy, which only a coupled
mode treatment would predict.
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Unperturbed TRM refocusing at source range (100 Hz, 3 Hz BW, 1000 km)
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Figure 22 TRM performance in an unperturbed SOFAR channel (top), and the en-
semble average of the focus in the time-depth plane obtained by Monte-Carlo average
(middle), and as obtained by the the closed form expression (bottom). Performance
is more robust than in the shallow water case, but the environmental perturbations
can still be expected to open up the depth focus from a region less than 100 m wide
to one almost 1500 m wide.

3.6 TRM performance degradation in a SOFAR channel

The degradation of TRM focusing at the 1000 km range is illustrated in Figure 22.
The top panel shows the refocusing performance of the unperturbed TRM in the
depth-time plane. Asin the shallow water case, the resolution of the temporal focus
is dictated by the transmitted bandwidth (here 3 Hz), while the depth resolution
is controlled by the number of propagating modes and their loss. In the ORCA
runs which yielded the complex wavenumbers for this study, only the last 20 modes
suffered any propagation loss at all, due to interaction with a lossy bottom, and
only modes higher than 121 suffered losses of more than 1 dB. Attenuation due to
relaxation processes in the water column were ignored. Thus the depth resolution is
quite good in the unperturbed case. The ensemble averaged results of the intensity
both for Monte-Carlo (middle panel) and closed form (bottom panel) show very
little decrease in the temporal performance of the refocusing, but there is a sub-
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stantial decrease in the depth performance. The focus region is significantly blurred
across the sound channel axis between the depths of 500 and 2000 meters, while
the unperturbed focus region is confined to depths between 1250 and 1350 m. Both
the Monte-Carlo average and the closed form solution agree on the amount and the
spatial characteristics of the blurring introduced by the water column variability.
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4

Conclusions

A comprehensive theory to describe the stability of time series received in waveguides
has been developed. The approach is unique in that closed form expressions for
perturbed and unperturbed impulse responses for waveguides have been derived
around a modal basis. Thus the theory offers a complimentary approach to ray
theory estimates of waveguide impulse responses.

The theory presented here is useful for estimating the upper bound of time se-
ries stability or predictability for waveguides which experience random fluctuations.
The theory requires these fluctuations to be characterized by some number of un-
correlated empirical orthogonal functions, each with its own power and horizontal
correlation length scale. The theory estimates the degree to which these sound speed
fluctuations affect the phase of the individual modes, and the time of flight of the
mode packets to the receiver. The more EOQFs are used to describe the water column
variability, the more the acoustic modes become uncorrelated from one another. As
the modes become uncorrelated, their coherent sum becomes less predictable, and
consequently the ensemble average of the time series becomes smoother and lower
in amplitude than any particular perturbed or unperturbed realization. Thus the
theory predicts the “defocusing” of the arrival structure in the time-depth plane
which occurs over many independent realizations. In practice, this defocusing can
be expected to occur over time scales of the ocean process which introduces the
sound speed fluctuations.

The theory estimates the upper bound of the time series predictability because it
relies on the least harsh model for propagation through water column variability;
the adiabatic approximation. While the mode shapes and the wavenumbers are
acknowledged to be strong functions of frequency in the underlying propagation
theory, the sound speed perturbations are assumed to affect only the travel time and
the accumulated phase of the individual modes. Thus mode coupling, the exchange
of energy into and out of modes caused by abrupt transitions of sound speed or
even by long accumulations of small coupling effects, is ignored. Even more prosaic
effects such as the change in the mode shapes due to the sound speed perturbations
are neglected. These assumptions imply that the theory takes a view of the effects
of water column variability on modal propagation which is almost benign.

The simplifying assumptions make possible the derivation of closed form expressions
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for the ensemble averase of the STA of the intensity received in a waveguide. For
the first time, these types of exvressions are now available for evaluating time series
stability as a function of the modal characteristics of the waveguide at the center
frequency and the spatial characteristics of the sound speed perturbations in the
waveguide. The requirements for running Monte-Carlo simulations are removed,
and Fourier synthesis is no longer required, so that a lower bound analysis of the
magnitude of the variability effects can be quickly obtained in closed form with the
insight that affords.

The theory was used to estimate the effects of internal wave activity on the pre-
dictability of time series in shallow water and in a SOFAR channel. The results
showed that for realistic sound speed perturbations caused by a Garrett-Munk spec-
trum with an amplitude of 320 m?cph, the lowest order modes in both propagation
scenarios had the most unpredictable phases and arrival times. In the shallow water
profile the result was that the onset of the arrival structure, associated with the low-
est order modes, became less predictable, while the later arrivals associated with the
higher order modes and bearing a strong relation to bottom-surface multiples were
quite stable. In the SOFAR channel the crescendo on the channel axis, again asso-
ciated with the lower order modes, was the least predictable component of the time
series, while the higher angle precursors, while somewhat unpredictable in travel
time, none the less proved themselves to be relatively insensitive to the sound speed
perturbations introduced by 1 GM.

Finally, the theory was utilized in its first application, to estimate in closed form
the expected value of the defocusing in the ensemble sense of a time reversal mirror.
The results shown for the shallow water case indicated that 1 GM could introduce
substantial defocusing in time and depth even while the time series themselves ap-
peared to be quite predictable and stable. For SOFAR propagation, the performance
degradation was less severe, but both results indicated that once the correlation time
scale of the water column is exceeded, significant blurring about the focus depth,
and by extension focus range, can be expected to occur. While this was known
before, a lower bound on the defocusing may now be quickly and easily obtained.
Since the results are given in closed form, it is hoped that a better understanding
of the defocusing phenomena may be formed.
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Annex A

~ Evaluation of frequency integrals for (p?gTA)

We wish to evaluate the following frequency integrals
o .
pvztm,r,t(wo’Aw) - 6_(9?‘"‘/ dw; e-—wl(@f«}-zv’n)e—wf(@fl-f-l/ZAw?)
-0

x/ duws exp(—w;;(@% — Ty — wlﬁfg))
-0 Pe
exp(—w3(03; + 1/2 Aw?)), (27)
[y S—

Az

where 7, = t— [ Sn m(r") dr’ for compactness of notation. Completing the square,
the w, integral may be evaluated, reducing Eq. (27) to

2_4 2 —02
pimyr,t(wo’ Aw) — 7r/A2e(@2 le) /4A2€ @nm

x/ dw; exp(—w1 (0% + ir, — (2i0%,7,, - 29%9%2)/4.424))
—co ~
eXP(“W%(\@ﬁ +1/2 807 - 9‘112/4142))- (28)

A

Completion of the square to the argument of the exponential inside the integral over
w; and evaluation of the integral yields

Pmri(Wo, W) = [T Ar\[7]Age%m

er/‘iAle(@g-—i‘rm)?/‘iAZ, (29)

which upon explicit evaluation of the parameters A;, B; and A; yields Eq. (12) as
desired.
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Annex B

Evaluation of frequency integrals for 02,

Upon squaring out the argument to the probability term on the fifth line of Eq. (13),
we find it useful to define the following constants for the evaluation of the frequency

integrals over wy, wy, wyr and wy

Oy = 3 (Dken + Dkons = Dk = Dkems)a rle 2

€

02 = Y (Dken+ Okent — Dkem — Dkerr) A Sen ), L)

€

0 = = (Dken + Dkent = Dken — Dbigmt) A Sema, L
ol = Z(eAken + Aknt = Dkem — Dker) A Senrag, rie)
0% = - S (Db + Doy = Dkiem — Dkirys) A Semiay, Tl
0% = ZEASznagzerle/2 +1/2AW?

0%, = Y ASen A Semog,rle

9%1, = Z ASe, A Senroﬁerﬁe

0y = D ASen A Semiol rle
02, = ZASfmagzerle/Q +1/2A W2
@31, = ZASem A Sen/tr;erﬁe
0%, = Z ASem O Semia? e

Oy = Y ASLolrt/2+1/200°

03y = E ASens A Semro?, vl

0%, = Y ASL.olrl/2+1/2A0%

Using these constants, the frequency integrals may be rewritten in the condensed
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format

Prmn'm! = e_ nmn’m! / d“)l e 1(0} i+ia(r)) _Wl

00
X/ d(u'g e—wz §—w1®12—zrm(r))€—w2@g2

0 2 2 2 4.
Y/ dwys e_wl'(el’_w2@1’2+w1@1’1+”"'(r)) - 91'1’

o
X / de/ exp(“wy (@gl - wlleglll + (4)29312 - L{ﬂ@%/l - 'iTml(’r)))
—00 B?;
exp(~w? 03,,), (30)
N’
Ay

where henceforth 7, ,, = (¢ — 7, m(r)). Integration over wy yields a term of the form
\/7/Ag exp(BZ /4Ay).

Squaring out By and separating out terms which are independent of w;, wy and wys,
Eq. (30) may be written

’ Pamn'm! = \/W/Azl exp(C'%//élAz/)e imn’m’
o0

x / dwy exp(—wy(O2 + ita(r) + ©2,2(02 ~ itys)/402))
-0

g Cryr
eXP(—wlz(@% '1/492'2'))
v
Y
x / " dwy exp(~wn(OF — inyy(r) —203,5(02 — irynr)/402,))
- Cogt
exp(wa(w1(03, - 205,03,/463,,)))
021
exp(—w%(@%;, '2/4@2'2'))
‘——w—/
Crra
/ dwy/ eXP(“wl’(Gl' + T (r) + 2@2'1'(93' - iTm')/4e§'2)
Oy
eXP(wl'(WZ(f)%'z — 203,1:03,/403,,)))
Coyr
exp(—w(w1 (91 — 2031,03,/403.,)))
Chyr
eXP(—‘Ul'(@l'l' - 2'1'/4/92’2')) (31)
v Ay
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where

CQ’ = @%; - ’iTm/.

Completing the square of the argument to the exponential kernel in the wy integral,

we obtain

Prmn'm! = VW/AI'V 7T/A21 eXp(Clzl/llAl/)EXP(C§//4A21)€—@:/"""""'

X / dwy exp(—w1(02 4 ima(r) + Crar — 2C11:Cre/4A1)
eXP("wlz(@?l + 0122' - C121'/4A1’))

X /oo dwy exp | —w 0% — ity (r) + Coz + 202/ Crr /4 A
o ’ +w1(2C1Cr10 /441 — Ca1)
‘ ~
eXP('—w%(@%Z + 02212 - 02211/4A1/)) (32)
Az

If we define
Cy = 02 — iy, + Cazr + 2C31:Cyr [4Ay

and

Ci2 = 2C51:Cr11[4Ay — Ca,
then the w, integral yields
\/7/Az exp((C’% + w2C2C12 + wf0f2)/4A2).
Then Eq. (32) may be written
p = \/7r/A2 \/ﬂ'/Alr\/ﬂ/Azf exp(C2/44;) exp(CE/4Ay) exp(C§,/4A2:)e"eimn'm'
X / dun exp(—wl(G)f + iTn(’I‘) + Chgr — 2011101//4.41' - 201202/4/12))

B
exp(—wi (0 + Cly — Chi[44r = C/44A2)). (33)
Ay

Evaluation of the w; integral yields the desired solution

Pt = [T /A1T/Ax\[T [ Avy[7 [ Agre™ Ot

x exp(C2/4A;) exp(C2/4Az) exp(C} [4Ar) exp(Ch/4Az), (34)

where

Cl = B%/4A1
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Annex C

Evaluation of frequency integrals for Type 2
correction to expressions for (p%74)

For p%r 4 for Type 2 narrow band approximation, we wish to evaluate the follow
integrals (assuming for the moment that a single mode function is a function of
frequency, this simplifies the expressions but does not affect the final answer as
the necessary cross terms in terms of the expressions derived here can easily be
determined”)

[ don (b0 4 n G2 emn(@RpimImt@hAT)
W

X / dw, <¢m + wy %) exp(—w; (02 — ir, — w;0%,)) exp(—w? (0%, + T?)).
; . S

Ow ~
Bz A?
But a¢ B a¢
m —w2A; —wyB, — B2/4A2 ____2_.___7_’1_
/ dw, wy— "€ 27re ¢/Aze™ 24; 0w’

so what remains to be evaluated is the integral

/ duwr (¢n +wy 6;)") e~ w1(0F+imn) o —w} (03, +T7)

(9
B2(w1)/a4, [, _ Ba(w1) 0dm
X \/¢/Aze (¢m oA, Bw)’ (35)

which may be written

[ o (60 4+ Gz ) emer(Oitim) A0 4T

Ow
2 Bi(wy) w10%,\ 8¢
BQ(wl)/‘iAz - 4 1 - 12
X \/é/Aze (qsm ( oA, 5 Az) 7% | (36)

which may be written as four integrals, the first of which is a normal Gaussian
integral, the second and third have the form of a first moment, and the third the
form of a second moment

V 7l'/AZ {/ dw, (¢n (qu - éié %)) e—w1(9%+i'rn)e—wf(9%l—T2)eB§/4A2
2 (7%
2
+ / dwy (¢n Om 9.2) w; e~w1(8F+in) ,~wi (03, ~T?) B} /44,

Ow 2A2
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n / doy (¢m _ B %) 0bn . -n(@3+ira) =i (01,~T?) B3/ 442

:272 Ow ) Ow 1
99, 8¢m G)12 2 —wl(@ +iTp) g~ 2(02,-T?) Bz/4A2
+ [ o <a B 24, 1 Y R

Eq. (38) may be rewritten

\/ 7 /A2 {/ dwy <¢n <¢m - %%)) o—w1 By g~ A1 B3/44;

N / doy 0¢m 01, ( b — Bj 6¢’m> 0bn |, ¢mwiBi =i A B3 /442

#5024, T 24, 0w ) B

A

s / o (z;pn 6{9¢m fj Wt e-nBr =y B[ty | (O3—irm /24 (38)
() W 2

N e’

B

which equals

mmela?/bh (@3 —itm)? /442

2
. _ 1/2 1/2
o fn/ el 1A [ oy e (s 42128) msanm,

. 1/2 1/2\?
+ W/Aze(@%‘”’")z/“AZB/ dw; w? e_(wlAl B4, ) eBi/AL (39)

where B; and A; are defined in the Annex A.

We know that

(a2 4B, j2412)°
/dw<w1+2BTll>e (w14l 4B /24; )633/4,1150,

so the second line of Eq. (39) equals

—A— n/Ayy\/m /Ay e(®3 —itm)?[442 ,B}/441

For the second moment we know that

By \? —(w14/24B,/241? 2
/dw(w1+ Al) . (m 1 +B1/24; )633/4,115\/7—;7
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so the third line of Eq. (39) equals
B 1 + B T/ A1/ [ Agel®3=imm)* /442 eBi/44
24; ' 44, ! '

Thus the expression for p4;, has as its kernel the expression

\/ W/Ag\/ TF/A16812/4A1 e(eg_iTm)2/4A2

x {an (0m- B; %>

24, 0w
(o %%+<¢ _ 5 %) 3%)&
" dw 2A2 ™ 2A2 Ow Ow , 2A1
06,96, Oh ) (L, BE
+ (aw ow 2A2 2A1 + 4A1 (40)
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